Hankel Determinants for Some Common Lattice Paths
نویسنده
چکیده
For a single value of `, let f(n, `) denote the number of lattice paths that use the steps (1, 1), (1,−1), and (`, 0), that run from (0, 0) to (n, 0), and that never run below the horizontal axis. Equivalently, f(n, `) satisfies the quadratic functional equation F (x) = P n≥0 f(n, `)x n = 1+ xF (x) + xF (x). Let Hn denote the n by n Hankel matrix, defined so that [Hn]i,j = f(i+ j− 2, `). Here we investigate the values of such determinants where ` = 0, 1, 2, 3. For ` = 0, 1, 2 we are able to employ the Gessel-Viennot-Lindström method. For the case ` = 3, the sequence of determinants forms a sequence of period 14, namely, (det(Hn))n≥1 = (1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1, 1, 1, 1, 1, 0, 0,−1,−1,−1, . . .) For this case we are able to use the continued fractions method recently introduced by Gessel and Xin. We also apply this technique to evaluate Hankel determinants for other generating functions satisfying a certain type of quadratic functional equation. Résumé. Pour une seule valeur de `, soit f(n, `) le nombre des chemins treillis que utilise les pas (1, 1), (1,−1), et (`, 0), vient de (0, 0) á (n, 0), et que ne vient jamais dessous l’axis horizontale. Équivalentement, le f(n, `) satisfié l’équation fonctionnelle quadratique F (x) = P n≥0 f(n, `)x n = 1 + xF (x) + xF (x). Soit Hn le n par n matrice de Hankel, définit pour que [Hn]i,j = f(i+ j− 2, `). Nous examinons de tels déterminants oú ` = 0, 1, 2, 3. Pour ` = 0, 1, 2 nous pouvons employer la méthode de Gessel-Viennot-Lindström. Pour le cas ` = 3, ls séquence de déterminants forme une séquence de période 14, á savoir (det(Hn))n≥1 = (1, 1, 0, 0,−1,−1,−1,−1,−1, 0, 0, 1, 1, 1, 1, 1, 0, 0,−1,−1,−1, . . .) Pour ce cas que nous pouvons utiliser la méthode de fractions continuée récemment introduit par Gessel et Xin. Nous appliquons aussi cette technique pour évaluer les déterminants de Hankel pour l’autres fonctions generatrices quie satisfait un certain type d’équation fonctionnelle qudratique.
منابع مشابه
From a Polynomial Riemann Hypothesis to Alternating Sign Matrices
This paper begins with a brief discussion of a class of polynomial Riemann hypotheses, which leads to the consideration of sequences of orthogonal polynomials and 3-term recursions. The discussion further leads to higher order polynomial recursions, including 4-term recursions where orthogonality is lost. Nevertheless, we show that classical results on the nature of zeros of real orthogonal pol...
متن کاملA Simple Proof of the Aztec Diamond Theorem
Based on a bijection between domino tilings of an Aztec diamond and nonintersecting lattice paths, a simple proof of the Aztec diamond theorem is given by means of Hankel determinants of the large and small Schröder numbers.
متن کاملO ct 2 00 1 CUMULANTS , LATTICE PATHS , AND ORTHOGONAL POLYNOMIALS
A formula expressing free cumulants in terms of the Jacobi parameters of the corresponding orthogonal polynomials is derived. It combines Flajolet's theory of continued fractions and Lagrange inversion. For the converse we discuss Gessel-Viennot theory to express Hankel determinants in terms of various cumulants.
متن کاملInverses of Motzkin and Schröder Paths
We suggest three applications for the inverses: For the inverse Motzkin matrix we look at Hankel determinants, and counting the paths inside a horizontal band, and for the inverse Schröder matrix we look at the paths inside the same band, but ending on the top side of the band.
متن کاملThe Generating Function of Ternary Trees and Continued Fractions
count ternary trees and the number of certain plane partitions and alternating sign matrices. Tamm evaluated these determinants by showing that the generating function for these entries has a continued fraction that is a special case of Gauss’s continued fraction for a quotient of hypergeometric series. We give a systematic application of the continued fraction method to a number of similar Han...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006